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ABSTRACT 

In the first part of this report we consider a dynamic 
prograiranlng model In which all rewards obtained by the 
decision maker arc assumed nonnegative. The decision 
maker's objective is to successively choose actions so 
as to maximize his expected reward earned over an 
infinite time span.  It follows from known results that 
the decision maker's choice need only depend upon the 
outcome of a randomization that depends on the model 
only through the state of the model and the time when the 
choice is made. We show by counterexample that this is 
basically the smallest class of decision rules that need 
be considered.  Conditions under which a stationary policy 
is optimal are also presented. 

In the second part we consider the same model under a 
new criteria, namely, the average cost incurred per unit 
time.  An example is presented in which there does not 
exist an e-optitaal randomized stationary policy. 
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SOMK RHIAkKS ON POSITIVE DYNAMIC PROGRAMMING 

by 

Sheldon M. Ross 

1_. INTRODUCTION 

Consider a Markov decision process having a countable state syace 1 and 

a finite action space A .  If action a is chosen when in state i , then 

(i)   we receive a nonnegative bounded reward R(i,a) 

and 

(ii)  the next state of the system Is chosen according to the transition 

probabilities {Pi.(a),j e 1} . 

A policy is any measurable rule for choosing actions.  Let X  and a  denote, 

respectively, the state of the process and the action chosen at time t .  For 

any policy TI , we define 

(1) V^i) = E^ R(Xt.at) | X0 - ij . 

A policy  is  said  to be 

(1) stationary,  it the action it chooses at any time is a deterministic 

function of  the  state at that  time. 

(2) randomized stationary,   if its action at any  time is a randomized 

function of  the state at that  time. 



(3) Markov or memoryless,  if Its action at time t is a deterministic 

function of the state at time  t  and t . 

(4) randomized Markov  or randomized memcrytesst  if its action at time t is 

a randomized function of the state at time t and t . 

It follows from results presented by Derman and Strauch [3] that we need 

never go outside the class of randomized memoryless policies.  That is, for any 

policy TT , there exists a randomized memoryless policy n'  such that 

(2) V .(i) > V (i)     Vi . 
TT      —  TT 

They prove this by showing that the class of randomized memoryless policies is 

large enough so that, for any policy TI , there exists a randomized memoryless 

policy    TT'    such that 

P^X, - j.at - a   | x0 - i} - Ptr,{Xt - j,at - a  | X0 = i} 

which,  of course.  Implies  that    V (i)  = V  ,(1)   . 

In Section 2 we  show,  by counterexample,   that we cannot generally restrict 

attention to either  the class of randomized  stationary policies or  to the class 

of memoryless policies.     In Section 3 we prove some results concerning the 

existence of a stationary policy that maximizes  (1). 



2.      IHK  COUNTl.KEXAMPLF'.S 

The   first  counterexample shows  that we cannot  always  restrict  attention  to 

the momoryless policies. 

Example   1: 

Let the states be given by 0,1,1' ,2,2',  ...   .  State 0 is an absorbing 

state and once entered can never be left, i.e.. 

P  =1 roo  1 ' 

In state n,n > 0 , there are 2 possible actions having respective transition 

probabilities 

Pn „+1(1) " P„ n'(2> - 1 '       n > 0 . n, n+J.     n, n 

In state    n',n > 0  ,  there  is a single available action, having transition 

probabilities 

Pn'.(n-1)'  " 1 n ' 1 

Pj, 0 - 1 n - 1  . 

The rewards depend only on the state and are given by 

R(n) - 0    n ^ 0 

ROO - 1    n > 0 . 

Suppose the initial state Is state 1 .  It is easy to see that under any menoryless 

rule the total expected reward will be finite. However the randooized stationary 

policy which, when in state n , selects action 1 with probability a  and 
n 

action ? witn probability 1 - a  has an infinite expected return when the a 
n n 

are chosen so that 



a 
«    a. -» 0    as    n 

1-1    X 

and 

•     n 

n-1 1-1 

The second  example shows that we cannot always restrict attention to the 

randomized stationary policies. 

Example 2: 

The states are given by 1.2,3, ...,*.  In state n there are 2 possible 

actions having respective transition probabilities 

Vn+l^ " 1 1 1 n < ' 

P« i (2> " a« ■ 1 " p« -<2)     1 < n < - . n,i     n      n,*        — 

State    •    Is an absorbing state,  i.e., 

P.. - 1  . 

The rewards depend only on the state and are given by 

»(1)  - 1 

R(n)  - 0 n - 2,3,  ..., • . 

The values a  are chosen to satisfy 

(3) « a > 0 ,     a < 1 all n . 
. n n 

n-1 



^ 

Suppopp that   the initial  state is state    1 .     It Is easy to see that under any 

randomized  stationary policy  the expected number of visits  to state    1    is a 

geometric  random variable with finite means,  hence  the  total expected return  is 

finite.    However, consider the policy which on its nth return to state    1    chooses 

action    1    n    times and  then chooses action    2  .    Since,  by  (3)  this policy has a 

positive probability of visiting state    1    infinitely often.  It has an infinite 

expected  return. 



3.     CONDITIONS 

Let 

V(i) = sup V  (i)   , i e  I 
IT 

It has been shown by Blackwell [2]   that    V    is the smallest nonnegative solution 

of 

V(i)  = max    R(i,a) + I P,.(a)V(j)     , (4) V(i)  = max    R(i,a) + I P..(a)V(j)     , i e  I 
a    ( j    ^ ) 

Let    u      be a stationary policy which, when  in state    i   , selects an action 

maximizing the right side of (4). 

Proposition 1: 

If    V(i)   < «•  ,   then    V Ä(i)  = V(i)     if and only if 
IT 

E *[V(Xn)   |  X0 = i] -*- 0 as    n -^ 

Proof: 

Let H = {X ,a0,X ,a. , .... X ,a }  denote the history of the process up 

to time t . Now 

v t-1 [V(Xt) ' E/(V(Xt) ' "t-^] 

However, 

[t) I Vi1 = \ \_/at-i)n^ + ^Vi^t-P E ^VCX^ | H^] = I  Px  ^a^^VU) + RCX^.a^p - »CX^^a^^ 



Tiuii. 

n 
K *   ),'   ^Vi'VP = E *[v(x0)] - E *[v(xn)] 

IT       t=l Tt TI 

r.nd  the   result  folJows  by  letting    n -> »  . 

Cojo]lary   1: 

Let  W(i),i t I , be any finite nonnegative solution of 

(5) W(i) = max Ud.a) + £ P  (a)W(j)l ,     i t I 

* 
and let  TT  be a stationary policy which, when in state i , selects an action 

maximizing the right side of (5).  If 

E Ä[W(Xn) | X0 = i] -> 0     as n -> -> 

then 

V *(i) = V(i) = W(i) 
•n 

Proof: 

By the same reasoning as in Proposition 1, we obtain that 

n 
E * I R<x

t_i.at-i)"
E »iwcv1 ~E A^'-V

1
 • 

II  t = l II Ti 

The result now follows by letting n -> » and recalling that V is the smallest 

nonnegative solution of (5). 

Corollary 2; 

Suppose there evists a (stopped) state — call it  0 — whirh is such that 



P00(a)   =1 all    a  e A 

R(0,a)   = 0 all    a  e A  . 

Let    n       be a  stationary policy determined by the optimal! ty Equation  (4).     Then 

if 

(i)       V    is bounded 

(ii)     P  ^[lim X    = 0   |  X    =  i]   =  1 

then 

V  .(i)  = V(i) 
ir 

Proof; 

The proof  follows  from Proposition 1 and the bounded convergence theorem 

since    V(0)  = 0   . 

i 
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ON THE NONEX1STENCE OF  c-OPTIMAL RANDOMIZED STATIONARY 

POLICIES  IN AVERAGE COST MARKOV DECISION MODELS 

by 

Sheldon M.  Ross 

1. INTRODUCTION 

Consider a Markov decision process [see Derman (1966) or Ross (1968)] having 

a countable state space I and a finite action space A .  If action a is chosen 

when in state i , then 

(i)  a cost c[i,a]  is incurred, and 

(ii)  the next state is determined according to the transition probabilities 

{Pi:j(a) , j e 1} . 

A policy is any measurable rule for choosing actions, and is called stationary if 

the (possibly randomized) action the policy chooses at any time depends only on 

the state of the process at that time.  In Maitra (1966), the question is asked of 

whether or not there always exists an e-optlmal stationary policy under the average 

expected cost criterion.  That is, is there a stationary policy whose average 

expected cost is within e of the infimum over all policies? We answer this in 

the negative by the following counterexample. 

2. THE COUNTEREXAMPLE 

Let the states be given by    1,1',2,2',  ..., n,^,   ..., «o .    In state    n  , 

1 ^ n < «■>  ,   there are two actions, with transition probabilities given by 

Pn.n+l(1) * 1 

In state    n*   ,  there is a single action,  having transition probabilities 



m*m ■ 

11 

Pn',(n-1)'   - i   •  "12 

State    <"     is an  .-rbKorbinj; slate  and  once  entered  is never  left,   i.e.. 

P       =  1   . 
cooo 

The costs depend  only  on the state and  are given by 

c[n,a]   =  2    all    n = 1,2 «  ,  all actions    a 

c[n,,a]   = 0    all    n >  1   ,   all    a  . 

The values    ot       arc  chosen to satisfy n ' 

(1)      an <  1 

(ii)       H     a    =  3/4 
n=l 

Suppose the initial state is state 1 . If a stationary policy is employed then, 

with probability 1 , a cost of 2 will be Incurred in all but a finite number of 

time periods. This follows, since under a stationary policy, each time the process 

enters state 1 there is a fixed positive probability that the process will never 

again re-enter that state. Therefore, under a stationary policy, the average cost 

will, with probability 1 , equal 2 . Hence, by the bounded convergence theorem, 

the average expected  cost will also equal     2   . 

Now let    R    be  the nonstationary policy which initially chooses  action    2   , 

and  then on  its  nth return to state    1   ,   chooses action    1    n  times and  then 

chooses action     2   .     The average cost  under  this policy will equal 



mm* rmmmmmm 

12 

2    with probability    1 -    n    a 

1    with probability      II    o    . 
i  n 

n-1 

This is true since  II o  represents the probability that, under R , the 
In 

process will never enter state » * Hence, by the bounded convergence theorem, 

the average expected cost under R is 3/4 + 2/4 » 5/4 . 

Hence, there is no c-optimal randomized stationary policy for e < 3/4 . 

^M J 
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